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THE KINETIC MODEL OF A CARRIER PHASE 

IN A HETEROGENEOUS MEDIUM 

Yu. E. Gorbachev UDC 533.7 

To describe a rarefied gas suspension we normally make use of a system of Boltzmann 
equations (BE), written for each of the components (see the review in [i]). Regimes which 
allow for such a description are examined in [2] and these are characterized by a system 
of inequalities (i, j = i, 2): r i << di, max r i ~ s (j ~ i), where r idenotes the radii of 

the mixture components, d i = ni -I/3, ni, s is the numerical density and the mean free path 
of the i-th component [s ~ (ri2ni)-I]" In [3-6] we find a method for the solution of this 
system through various Enskog-Chapman (ECh) modifications. 

Among the advantages in studying systems described by BE is the utilization of kinetic 
models. With this approach consideration of the complex physicochemical processes occurring 
at the surface of a particle is reduced to the calculation of the appropriate coefficients 
of the model (expressed in terms of the exchange coefficients), as well as the transition 
to the macroscopic description (including the derivation of expressions for the transfer 
coefficients) are realized considerably more simply than in the solution of the complete 
BE by the ECh method. The different versions of these kinetic models for mixtures were 
studied in [2, 7-9]. In the present study we examine the question of the construction of 
a kinetic model for the light component and its analysis within the framework of the ECh 
method, given an arbitrary function for the distribution of the heavy component. 

The following BE system serves as the basis of our study: 

d f / d t l  = J=(f: ,  ]:) + J:2(/~, f~), ~2/dt~ = J3z(/3, /2) + J21(/~, f~), 

whe re  d / d t  i = 8 / 8 t  + v i ' O / O r .  

L e t  u s  e x a m i n e  a h e t e r o g e n e o u s  m i x t u r e  c h a r a c t e r i z e d  by s u b s t a n t i a l  d i f f e r e n c e s  i n  
mass  and  c h a r a c t e r i s t i c  r a d i i  o f  t h e  c o m p o n e n t s  e 2 = mz/m 2 ~ 1,  r 1 ~ r 2. I n  t h i s  c a s e ,  
t h e  r e f e r e n c e  mass  ~12 - m l ,  and  i n  e v a l u a t i n g  t h e  s c a t t e r i n g  c r o s s  s e c t i o n  i t  i s  p o s s i b l e  
to assume that o~i r l  2 2 _ 4o l ~ ' O12 ~ r2  , 022 2" 

For the collision terms Jij we will use Boltzmann-type collision integrals written 
in symmetrizedform: 

( ' n x r ~ 2 ) 8 ~  ' , a , , erij = ) dr, dvj%8 oij ( / ,Is  - 1 , 4 ) ,  ( i )  

where 6p and 6 E are the delta-functions of the conservation of momentum and of the kinetic 
energy of the colliding pair; the primes denote that a given quantity belongs to the charac- 
teristics of state after collision; a d is the differential scattering cross section whose 
analytical approximations for elastic collisions have been studied in detail in [i0]. In 
particular, in order to calculate the cross section of the collision between the light com- 
ponent and a heavy component, as well as within the heavy component, it was proposed in 
[ii] to describe the corresponding interactions by means of the Kihara potential. 

Construction of the kinetic model [i.e., a finite-multiple approximation of integral 
(i)] involves two stages: the finding of the quasisteady distributions of fi~ the expan- 
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sion of the distribution function and the collision integral over sets of the functions 

~. 

The quasisteady distributions of fi ~ are determined by a set of slow variables FiT = 
(fi, XiT), where X7 represents the approximate collision invariance (CI) [12]: 

n~ 1 (Z~v, J 0  ~ O (k 0, (2 )  

J~= ~,,J~, ~ ) = [ ~ d v ,  k, i s  t h e  Knudsen number  o f  t h e  i - t h  componen t ;  i t  i s  u n d e r s t o o d  (% 
5 

that X has been made dimensionless in appropriate fashion. 

In the construction of the kinetic model for the light component we will dwell on the 
situation in which it can be described in the terminology of ordinary slow (hydrodynamic) 
variables nl, ul, T I (density, velocity, and temperature). As the function near which we 
will linearize the light-component distribution function we will take the Maxwell-Boltzmann 
distribution (~i ~ i) 

/ 1 = / ~ 0 ( i + % ) ,  / ~ o ( v ) = n l [ ~ )  exp - -  2kr 1 ]" (3 )  

From t h e  c o n d i t i o n s  imposed  on t h e  d i s t r i b u t i o n  f u n c t i o n  and f rom t h e  p r o p e r t i e s  o f  fz0 we 
o b t a i n  t h e  r e l a t i o n s h i p  

] f a o % { l ,  v ,  ( I / 2 ) ( v  - -  u : ) 2 } d v  = O. ( 4 )  

Before we turn to the direct notation of the model kinetic equation, let us take note 
of the fact that in its solution by the ECh method the function r is expanded into a series 
of the form 

r = E k~r (5)  
q=o  

The q u e s t i o n  as  t o  t h e  t e r m  f rom which t h i s  e x p a n s i o n  b e g i n s  depends  on t h e  s o l u t i o n  o f  
t h e  e q u a t i o n  f o r  t h e  q u a s i s t e a d y  d i s t r i b u t i o n  

Jn(/1 ~ + J12(f~ ~ l,) = o(k~). (6)  

I f  t h e  i n t e r c o m p o n e n t  i n t e r a c t i o n  d e t e r m i n e d  by t h e  t e r m  Jz2 in  (6 )  l e a d s  t o  a marked  d e v i a -  
t i o n  o f  fz  ~ f rom fz0 in  t h e  s e n s e  t h a t  1 > . ~ 1 ( 0 )  = ( f l  ~ - f z 0 ) / f z 0  a k l  [ w i t h  ~ l ( 0 )  s a t i s -  
f y i n g  r e l a t i o n s h i p s  ( 4 ) ] ,  t h e n  s e r i e s  (5 )  b e g i n s  f rom t h e  t e r m  q = 0, and in  t h e  h y d r o d y n -  
amic  e q u a t i o n , s  c h a n g e s  w i l l  b e g i n  in  t h e  z e r o t h  o r d e r  o f  t h e  Knudsen number .  However ,  i f  
t h e  i n t e r c o m p o n e n t  i n t e r a c t i o n  i n t r o d u c e s  s m a l l  p e r t u r b a t i o n s ,  t h e  d e v i a t i o n  f rom t h e  e q u i -  
l i b r i u m  f u n c t i o n  fz0 w i l l  be  s m a l l  [ ~ O ( k l ) ]  and t h e  c o r r e c t i o n  f a c t o r s  i n  t h e  h y d r o d y n a m i c  
e q u a t i o n s  w i l l  a p p e a r  o n l y  in  t h e  N a v i e r - S t o k e s  a p p r o x i m a t i o n s .  

L e t  us  now t u r n  t o  t h e  c o n s t r u c t i o n  o f  t h e  mode l .  The f u n c t i o n  % f rom (3)  w i l l  be 
expanded  o v e r  a b a s e  s y s t e m  fo rmed  by a c o m b i n a t i o n  o f  Sonin '  p o l y n o m i a l s  and i r r e d u c i b l e  
t e n s o r s  [13 ] :  

l m  

The expansion coefficients a are tensor functions of order ~, depending on the spatial and 
time variables. Summation over ~ symbolizes the summation over the s subscripts (~)s To 
simplify the notation we will subsequently sometimes indicate only the order of the tensor; 
ys163 denotes the irreducible tensors of order ~, ~s 2) represents the total system 

of orthogonal polynomials: 

j s,+lj  (cO, c = ( v l -  r = r (l q- m -}- 3/2) 

S~+I/2m(c 2) denotes the Sonin-Laguerre polynomials. The explicit form of some of the first 
functions of Y and ~ can be found, for example, in [13]. 
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Relationship (4) generates certain relationships between the coefficient a and the 
hydrodynamic quantities: 

aoo = a l , ~ ,  0 ~ aO1  ~ O )  

f -4- o 

( 7 )  %/r 5kTi 
qi~ = --  nikTi r 6m i al,cz,1 

The G r e e k  s u b s c r i p t s  h e r e  d e n o t e  t h e  C a r t e s i a n  c o o r d i n a t e s  o f  t h e  s t r e s s  t e n s o r  P and  t h e  
h e a t - f l o w  v e c t o r  q,. d e t e r m i n e d  f r o m  t h e  r e l a t i o n s h i p s  

P~=  m, (v -- uz) (v -- uO Adv, q , =  -ff-(v--uO~(v--u~)/~dv. (8) 

The i n t e g r a l  f o r  t h e  l i g h t  c o m p o n e n t ,  l i n e a r i z e d  w i t h  t h e  a i d  o f  ( 3 ) ,  c a n  be r e p r e s e n t e d  
in the form of two terms: 

L = L ~ -I- LI(%),  L ~ ---- J'l~(ilo, is), 

m__~ dvl dvi dvi6pSEOn/lo (vl) flo (vl) [[%]] + L*(r "h 

~ -  ~ l t in* 2 ~ * 1  
9i~ ,3 

[[9]]----  9" + ~ ' - -  9 - -  ~ .  

(9) 

Expanding L over the same basis system of functions as ~ , we obtain 

d ]n Jlo ~,~  + (i + ~ ) ~  = 2 Akz*k~Yh + Z BkmZ)~am)~*h~Yk' 
kS klmn 

( lO) 

where the expansion coefficients are determined in terms of L ~ and Li: 

Akz = ~ (L ~ *~*Yk), 

t Qk - - ~  

k~ i (L 1 (~,~nY~), B ~  = n,O----~ 

# Y h  (c ~ Yk (c o ) dc ~ �9 
[4u] 

r 

( l l )  

In the expression for Qk it is understood that we are dealing with a scalar tensor product, 
and the integration is performed over the solid angle corresponding to the vector ~ = c/c. 
The same scalar product is used in (ii) as in (2). It is easy to obtain A00 = 0. The coef- 
ficients B are presented in the form of two terms B = B ~ + B', corresponding to the first 
and second terms in L I from (9). The properties of B ~ have been thoroughly studied (see, 
for example, [13]) and we will not dwell in detail on these here, but we will take note 
only of the fact that 

BOkl ~Omn ~Ok! ~OkZ ~Oh! O, 
~ = ~ k ~  , - o o  : ~ o  = ~ o l  : ( 1 2 )  

For a final formulation of the model it is necessary to select a method to "interrupt" 
the infinite sums in (I0). Proceeding in the spirit of [13], we will carry out the substi- 
tution: with Ik + 2s I > N, Im + 2n I > N we assume that Aks = 0 and Bmnks e -~N6km6s where 
the first Kronecker delta represents the dimensional tensor 2k = 2m. For v N it is natural 
to use the usual approximation VN = -BN,0 ~176 

The proposed procedure allows us to formulate a model of order N in the form 

D% = E AkzckIYk + E ( B ~  § vN6~Sln)  am,~r - -  v ~ %  
Ik+ 211~N Ih+ 2 l ~ N  

[D i s  t h e  o p e r a t o r  i n  t h e  l e f t - h a n d  s i d e  o f  ( 1 0 ) ] .  We n o t e  t h a t  i n  c o n t r a s t  t o  t h e  i s o t r o p i c  
case, in the N-th-order model derived here it is no longer possible to eliminate the N-order 
irreducible tensor. 
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The simplest model which takes into consideration the presence of the proposed five 
approximate collisions invariants is the second-order model. To eliminate the cumbersome 
calculations which arise in higher-order models, we will demonstrate the fundamental fea- 
tures introduced by the impurity phase on the example of this model. Using the properties 
of the coefficients A and B [see (12) and the text above], we obtain (understood here is 
summation over repeating subscripts) 

+ 

= ( //oi z , , .  Aol +  ,  ,oj.01ro + 
Pl 

V ''~- 1]~II D'I,OLO~ t~lO'Yl,a "t- + &,~,,o + v ' i -g ' -77 ~'~,~.~,o) 

,/_-f % 
A~,~f~,~ + ~ 15 Pl "-'=An,o } xP',oY2,=f~ - -  %%" 

(13) 

n__ D'2,a~,0 
H e r e  we u s e d  ~V~no2,gn,0 = 0 and  t h e  r e l a t i o n s h i p  o f  aaAn, 0 t o  t h e  s t r e s s  t e n s o r  f r o m  ( 7 ) .  
L e t  u s  n o t e  t h a t  N - o r d e r  m o d e l ,  j u s t  a s  i n  t h e  s i n g l e - c 0 m p o n e n t  c a s e ,  d o e s  n o t  c o n t a i n  BN ~  
b u t  i t  c o n t a i n s  o n l y  t h e  v a l u e s  o f  B N ' .  L e t  u s  a s c e r t a i n  t h e  p h y s i c a l  s e n s e  o f  t h e  c o e f f i -  
c i e n t s  A. We w i l l  e x a m i n e  t h e  q u a n t i t i e s  

FI~= 5mlvlJ12dvl, M12~= Sl?~1(Yl--/~l)(~(u1--/~l)~]12dv1, 

Q12 = T Sp Mlo. = j -5- vlJ12 dr1 - -  ul. FI~, 

characterizing the transmitted momentum, stress, and energy. Using the explicit form of 
the functions ~ and Y, we obtain 

1~,r ~ QO 
Al,=,0 = ~ n 1 V 2 m ~  ' A~ = - -  T nlkr  112 �9 

A n a l o g o u s l y ,  A20 i s  e x p r e s s e d  i n  t e r m s  o f  M ~ The s u p e r s c r i p t  0 w i t h  F ,  Q, a n d  M i n d i c a t e s  
t h a t  t h e s e  q u a n t i t i e s  a r e  c a l c u l a t e d  w i t h  t h e  e q u i l i b r i u m  d i s t r i b u t i o n  f u n c t i o n  f ~ 0 .  

By m e a n s  o f  t h e  u s u a l  p r o c e d u r e  we c a n  make t h e  t r a n s i t i o n  f r o m  ( 1 3 )  t o  t h e  t r a n s f e r  
e q u a t  i o n  : 

On1 OnlUl OUl OUl i o P1, 
~  -~ =FI 01 or 

OkT1 Okrl 2 (0q 1 Otll~ 
at  + u l " - - ~ = - - ~ n ~ \ O r  + P I :  or  / - -  E1,  

(14) 

where P1and ql were introduced into (8), while F I and E l for the second-order model have 
the form 

(15) 

It is essential that we solve Eq. (13) in order to close system (14). Let us first 
take a look at the situation in which the intercomponent interaction changes the equilib- 
rium distribution in the zeroth order of the Knudsen number. Such a distribution is given 
by relationship (6), which for our model indicates the vanishing of the right-hand side 
of (13) as ~I--~I(0). The latter relationship is easily expanded for ~i(0)- Taking into con- 
sideration that ~i(0) must also satisfy relationships (4), we obtain 

( 1/ -~-  1~'11 D'2,G~,0~ 
~(o) = ~7~ ~-4.,,~,o + r W  p~ -~,~,o ) %oY~,~. (16) 
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Using this result to calculate the stress tensor according to (8), we arrive at the matrix 
equation 

(17) 

,2o it is easy to demonstrate that SpH = 0 and H~ Using the properties of A2, 0 and B20 , = 

The absence of a flow of heat: q = 0 follows out of (16). Here we see the "defect" 
of the second-order model. For the third-order model in zeroth approximation of k I we obtain 
a nonzero flow of heat, one that can be ascribed to the absence of equilibrium in the two- 
component medium. 

In order to analyze the numerous features contained in expressions (15) and (17), let 
us examine the extensive flow regime corresponding to the case max {k2, k2/~21 } ~ l, where 
k 2 is the Knudsen number for the heavy component, and ~2z is the parameter by means of which 
the collision integral J2z is made dimensionless, and at the same time characterizing the 
interphase interaction. In this regime f2 is the slow variable (the so-called collision-free 
regime). Then, as the quasisteady distribution of the impurity phase we can choose f2in 
which represents the initial distribution. Such a distribution is frequently Maxwellian 
in nature with the parameters u20, T20. We note that these quantities are not flow variables, 
but only parameters of the function f2in, i.e., the relaxation, generally speaking, occurs 
with a slow change in the very form of the function f2, and not only of its parameters. 
A similar situation exists, for example, in the injection of a Maxwell bundle of particles 
into a stream of gas or in the passage of a shock wave through a cloud of dust, when each 
of the phases ahead of the shock-wave front is in equilibrium with the total hydrodynamic 
velocity and the overall temperature. 

Such a choice for the quasisteady distribution makes it possible directly to calculate 
the coefficients A and B. The expressions for these quantities are even more simplified 
if we make use of the smallness of the parameter e. In (Ii) we turn to the new integration 
variables by means of the substitutions 

v l = V + l + 8 ~  , v 2 = V  i ' ~ 2  G, g :  2--~1 G 

and the analogous substitution for the variables identified with primes. In view of the 
assumptions made above, the functions fz(vl) and f2(v2) contained within the coefficients 
of the model differ little from the Maxwell functions, and we can therefore assume that they 

a characteristic form with the maximum at v~ = ui = nil] v~/~dv~ (the average have velocity) 

and with the width of the maximum ~mi/2kT i. As a consequence of normalization and because 
of the relationship e ~ i the function f2 exhibits a sharp peak, and within the scope of 
the asymptotic Laplace method the remaining functions may be regarded as rather smooth and 
that they can be calculated at the point v 2 = u 2. The remaining integral is calculated 

in trivial fashion, taking into consideration that ~ /2dv2  = n 2. In this expression we will 
neglect the terms -e 2, and this will give us 

B~?n _ n~ ]/2kr I ~ ~3 dg d .  dn'a d (g, n . n ' )  exp ( - -  (g - -  w) 2) X 

X r ((g - -  w) 2) Yi  (g - -  w) [ r  ((g' - -  w) ~) r ~  (g' - -  w) - -  ~ n  ((g - -  w) 2) Y~ (g - -  W)]; ( 18 ) 

Q0 = Q~ = 1, Q2 = 2/3, Qa = 4/25, W = ]/m~/2kT~(u~ - -  U2o). 

Tmn It is easy to find the expressions for h if we use the relationship Amn Boo . 

Let us now turn to the calculation of the stress tensor from (17) and the character- 
istics of the interphase interaction (15). In approximation of the small anisotropy 
(I[AI[ ~ i) in the initial stage of perturbation theory we will obtain ( I ~ : 8 ~ 8 ~ r  

-- Aa~A2,~r162 (19 ) 
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For a cross section of the interaction we will take the model of solid spheres in zeroth 
approximation for A and we will find (the expressions for the coefficients A and B can be 
found in the Appendix) 

0 

(20) 

Thus, the presence of the second component leads to the appearance of a substantially 
anisotropic term in the stress tensor. In the approximation with which we are dealing here, 
additional "pressure" arises only in the direction of the relative velocity. When we take 
into consideration the second term in (19) additional contributions to the pressure arise 
in all directions. We are not going to write out the corresponding expressions here, be- 
cause they are cumbersome; however, these can easily be reproduced by using the expression 
from the Appendix identified (A.2). The correction factors to the stress tensor, derived 
earlier, are naturally referred to as the relaxation pressure, since they disappear as the 
system reaches equilibrium, a point at which the velocities are equalized (w=0). 

For the force of the interphase interaction within the scope of these assumptions we 
have 

-1 [ ~,2 wv +a 2(W~wv wa 

o o  

~ = -5- n,,o~ ~ 5 ~ , ~ 1  ff @ q ~ - ~  & 1/q~ + ~ + 2q~o~ ~, 
--1 

(21) 

As we can see from (21), in addition to the component along the relative velocity, the inter- 
component force FI also has components in the remaining directions, which may be attributed 
to the significant perturbation of the distribution function for the light component. 

The interphase exchange of energy is determined by means of the expression 

2 " T  --1 2 7~ = - - 2  V-~-kTlq)(w)w(zo "4-(al + 2a2)- B- V y %  W~I3 ) (22) 

[al, 2 are the same as in (21)]. 

Relationships (20)-(22) are closed in the zeroth approximation of the Knudsen number 
in the transfer equation (14) when the impurity component exerts considerable influence. 
Extremely cumbersome expressions appear in the first order with respect to k I, and we will 
not dwell on these here. In the relaxation process the relative velocity w diminishes and 
the perturbation of the distribution function becomes small, i.e., series (5) begins from 
the term with q = 1 (~i(0) = 0). In this case the scheme for the solution of Eq. (13) 
changes, since in the zeroth approximation of k z we have fl = fz0. Consequently, with the 
closure of the transport equation (14) as k I + 0 we have PIaB = P16a$, which means NaB = 0. 
The effects of anisotropy are small and do not become apparent in the approximation under 
consideration. 

In the first approximation of the parameter k z from (13) we have 

% = -- % c ~ - - - f f  (v l - -u l ) -VkT 1 + 2(c~ U~--  

~5 Pl  LP2'~I'0 ] J '  Yl(~fJ = (V0uI ) (~  - -  A2'~'/3'0" 

(23) 

Substitution of (23) into expression (8) for P leads to the matrix equation 

H~---- ra~ + A~H~r F---- -- 2~1U1, ~1---- nlkTD'~ 1 (24) 
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[A is the same as in (17)]. Using the properties of F and B20 '~~ it is easy to show that 
SpH = 0 and Ya~ = H~. 

An analogous procedure for the heat-flow vector leads to q = -X~V inkT~, Xz = (15/4)- 
(k/m~)B~. Let us note that in the third-order model for q we now obtain a matrix equation 
such as (24), and in the corresponding analog we have a term additional to V inkTx (the 
analog A20). In the case of low anisotropy, in analogy with (19), we obtain 

P~p = pSa~ + F ~  + n ~  ~r ( 2 5 )  

The  r e s u l t s  o b t a i n e d  h e r e  i n d i c a t e  t h e  n o n - N e w t o n i a n  n a t u r e  o f  t h e  f l o w  a n d  t h e  a n i -  
s o t r o p y  o f  t h e  v i s c o s i t y  c o e f f i c i e n t .  L e t  u s  n o t e  t h a t  t h e  a n i s o t r o p y  o f  t h e  s t r e s s  t e n s o r  
(both in the case of limited and pronounced effect on the part of the impurity component) 
is essentially a reflection of the fact that the presence of the impurity, not in equilib- 
rium with the carrier component and exerting a directed action on the latter, causes the 
carrier phase to be a nonclosed nonisotropic system. 

In conclusion we will write out the structure of the stress tensor determined from 
relationship (25) by using approximation (18) for the coefficients, and by using the ex- 
pressions derived in the Appendix: 

Pza~ = (p~ + p~) 8~- 2 ~  U ~ n  -{- 29~b~ (U~w.wa + U~anw~w~)/w ~, 
(26) F 

Pl*= b o r ~ w ~ ,  ,m~ | K - ~J ~ - ~ - j .  
L 

Calculation of the coefficient B' with the transport scattering cross sections dependent 
on their argument yields the following values for the parameters: 

oo 1 

"6~ = .-~ "-16- ~ J dqq e q dx ],/q'~ + w ~ + 2qWX~li, 
0 - -J .  

~k, - -  -~-t [q~ (6x2 _ t5x4 + 1) + 4w 2 (3x ~ - -  i)],  ~h : 2q 2 ( x~ - -  t )  ~, 

~l., = q~( 35x4 - -  30x ~ -[- 3) - -  4w~(3x ~" - -  l ) ,  ~h : 2q2( 6x2 - -  5x4 - -  i ) .  

The p~* and ~i* contained in the expression for the stress tensor have the sense of relaxation 
pressure and the tensor of effective viscosity. Thus, the rheology of the two-component 
medium differs substantially from the Newtonian both as a result of the fact that the stress 
tensor is a function of velocity and as a result of the anisotropy of the viscosity coeffi- 
cient. Moreover, an additional term arises in the stress tensor [the last term in (26)], 
which exhibits a totally different structure: the stresses are proportional not only to 
the elements of the strain-rate tensor but also to the dyads made up of the relative velo- 
cities. 

We should take note of the fact that the observed structure of the hydrodynamics equa- 
tions for the carrier component may be significant in the study of the flow stability of 
two-component mixtures and the propagation of sound in such media. 

APPENDIX 

On the basis of expressions (18), for the coefficient B' of the model and the indicated 
relationship between the coefficients A and B' we obtain a representation for these in the 
form of quadratures containing o d and o v, i.e., the cross section of the diffusion and of 
the viscosity [for the solid-sphere model (3/2)o v = o d = o]: 

3 
Aol : 2w~zAl,~, o : - -  2q~ (w) w 2, A~,~,o : - ~  ~ (w) w ~ W ~  

[the function ~(w) and the tensor W were introduced in (20)], 

w~w[~w~, 
B'l,V,o 

2 , ~ , 0  = - -  a l  W3 

~ [ % + %,o ] 
w~ ~.z ~ ] - -  6 ~  a~v + a~ 

a2 6 ~  --j- + ~o j ~ -5 J' 
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1 

Oi "-- 4122 " ~ / ] ~ ' ~ 1 3  ~ / 5 - ~  1 ~ d q q 4 9 - q 2 ~ d x V q  2 -~ u72 -~2q~uX(~dl2~i, 

--1 

~ = q ( S x  a - -  3x) & w ( 3 x  ~ - -  t), ~2 ---- q x ( l  - - x ~ ) ,  

~3 = I - - x  2, ~4 = q, ~5 = t 

[the coefficients a~,:, calculated in the solid-sphere model, are shown in (21)], 

B'01 o ~ DtI,V,O. I 
2,al~,O = ~LCV~2,~z[~,O, 

B'2,m.,o 
--  b~ (6~8~ + ~j6.~) --  b~ (Wj~6~m + W~Sj,~ + WjmSi~ + W~m6j.), 

oc 1 

bi ~- -~n~ ] / -~ - f i1~  dq q'e-q2 S Vq~- + w2 --b 2qwx --nm I 
0 --I 

[ )" 1 ~---- ~-q a . ~ q  (Tx 4 - -  6 x  2 - -  I)  + ao~2 - -  (~a~2 -~- (-- 19x'~ + 3 x  + 2) , 

3 

~3 = 2q ~12q  ( 5x4 - -  6 x~ + I)  + a ~ 2  - -  y aa~2 - - C -  (x~" - -  J) ' 

~5 -- T a~2q~ (6z= -- 7x~ + I) + a~= -- dim} -f- (I -- x =) , 

(A.1)  

(A.2)  
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